Running, hopping and trotting: tuning step frequency to the resonant frequency of the bouncing system favors larger animals.

نویسندگان

  • Giovanni A Cavagna
  • Mario A Legramandi
چکیده

A long-lasting challenge in comparative physiology is to understand why the efficiency of the mechanical work done to maintain locomotion increases with body mass. It has been suggested that this is due to a more elastic step in larger animals. Here, we show in running, hopping and trotting animals, and in human running during growth, that the resonant frequency of the bouncing system decreases with increasing body mass and is, surprisingly, independent of species or gait. Step frequency roughly equals the resonant frequency in trotting and running, whereas it is about half the resonant frequency in hopping. The energy loss by elastic hysteresis during loading and unloading the bouncing system from its equilibrium position decreases with increasing body mass. Similarity to a symmetrical bounce increases with increasing body mass and, for a given body mass, seems to be maximal in hopping, intermediate in trotting and minimal in running. We conclude that: (1) tuning step frequency to the resonant frequency of the bouncing system coincides with a lower hysteresis loss in larger, more-compliant animals; (2) the mechanism of gait per se affects similarity with a symmetrical bounce, independent of hysteresis; and (3) the greater efficiency in larger animals may be due, at least in part, to a lower hysteresis loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry and Asymmetry in Bouncing Gaits

In running, hopping and trotting gaits, the center of mass of the body oscillates each step below and above an equilibrium position where the vertical force on the ground equals body weight. In trotting and low speed human running, the average vertical acceleration of the center of mass during the lower part of the oscillation equals that of the upper part, the duration of the lower part equals...

متن کامل

Resonant hopping of a robot controlled by an artificial neural oscillator.

The bouncing gaits of terrestrial animals (hopping, running, trotting) can be modeled as a hybrid dynamic system, with spring-mass dynamics during stance and ballistic motion during the aerial phase. We used a simple hopping robot controlled by an artificial neural oscillator to test the ability of the neural oscillator to adaptively drive this hybrid dynamic system. The robot had a single join...

متن کامل

Musculoskeletal Basis for the Scaling of Leg Stiffness with Body Mass in Humans

INTRODUCTION Running, hopping and trotting animals can be modeled as spring-mass systems in which the mechanical behavior of the musculoskeletal system is represented as a leg spring. The stiffness of the leg spring is the primary determinant of the dynamics of running. Biomechanical studies have revealed that larger mammalian species have stiffer legs (Farley et al., 1993). Similarly, large ad...

متن کامل

The bounce of the body in hopping, running and trotting: different machines with the same motor

The bouncing mechanism of human running is characterized by a shorter duration of the brake after 'landing' compared with a longer duration of the push before 'takeoff'. This landing-takeoff asymmetry has been thought to be a consequence of the force-velocity relation of the muscle, resulting in a greater force exerted during stretching after landing and a lower force developed during shortenin...

متن کامل

Positive force feedback in bouncing gaits?

During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 218 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2015